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Abstrad. We present resulk of elastic band scucmre far two-dimensional composite materials, 
composed of periodical square m a y s  of parallel cylinders in a background. 

We reveal, for the first time, the existence of several very large complete band gaps in the 
band structure of a material of practical interest such as a C fibre reinforced epoxy composite. 
Wrthin these gaps the propagation of acoustic waves is forbidden. The inkiuence of the geumewy 
of the cylinders and the effect of the composition of the composite material on the band suuctuce 
are shldied. We also wmpare these results with those obtained for metallic composites such as 
W (AI) cylinders in an AI (W) matrix. 

The wmplete band gaps are observed in the cases of C cylinders in epoxy or W cylinders 
in AI, but not in the apposite situations. We discuss the existence of these gaps in relation to 
the physical parameters of the materials involved. 

1. Introduction 

During the last few decades, the propagation of waves in periodic or random composite 
systems has been studied extensively. Various structures and compositions of composite 
materials have been investigated using different approaches. The propagation of waves 
in periodic composite media such as a fluid containing immovable rigid spheres [l] or 
a solid containing spherical cavities [2] (inclusions being located periodically on a three- 
dimensional array) has been studied using the Floquet theory. The finite-element method 
has been extended to model the propagation of plane harmonic waves in one-, two- or three- 
dimensional periodic structures [3-5]. Wirgin and Ghariani [6] have studied the propagation 
of a shear horizontal wave in random composite fibrous media and have shown that the 
Urick-Ament formula gives a good description of the response of the system under some 
restrictions. 

Moreover, there has been considerable interest, during the last few years, in the existence 
of band gaps in the optical [7-101 and acoustic [ll-171 band structures and the presence 
of regions of very low density of states in periodic as well as in random composite 
systems. One motivation for these studies is a better understanding of wave localization in 
inhomogeneous media. In the case of the elastic composites with which we are dealing in 
this work, one can also consider engineering applications such as a vihationless environment 
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for high-precision mechanical systems in a given frequency range or design of transducers 
and other devices. The elastic band structure of two-dimensional composite materials, 
formed from periodic arrays of paralleI cylinders embedded in a background material, has 
been treated independently in a few recent works by Sigalas and Economou [ 11-14] and by 
Kushwaha et al [15-171. Kushwaha et al [U] considered only the transverse polarization 
mode of vibration (with elastic displacement parallel to the cylinders and perpendicular to 
the wavevectors). The dispersion curves for Ni (AI) cylinders in an AI mi) background 
were presented. Phononic band gaps, extending throughout the first Brillouin zone, were 
found in both cases. On the other hand, the dependence of the band gap on the composition 
of the material and on the physical parameters of the constituents involved in the composite 
system was investigated [16]. In addition to the above polarization, Sigalas and Economou 
[I31 also studied the coupled longitudinal-transverse polarization mode of vibration for 
which the elastic displacement as well as the Bloch wave vector are perpendicular to the 
cylinders’ axis. They found that Au cylinders in a Be background exhibit a very narrow, 
albeit complete gap, shared by both polarizations. They proposed [14] that the cermet 
topology, in which the cylinders are made of a low-velocity material surrounded by a high- 
velocity host material, is the more favourable periodic binary composite structure for the 
appearance of acoustic gaps. 

In this paper, we present results of elastic band structure for commercially available 
composite materials such as epoxy reinforced C or glass fibres. The dispersion curves for 
combinations of two isotropic metals such as W and AI are also calculated. One new 
result in this work is to emphasize the existence of several large complete band gaps in 
the epoxy reinforced C cylinder composite while one single narrow low-frequency gap was 
found in a previous work on elastic composites 1131. We also point out the possibility of 
very flat bands. The calculation of the band structure is performed for different shapes 
of the cylinder cross section, when the array of rods forms a square lattice. A general 
requirement for the existence of complete band gaps (which is fulfilled in our examples) is 
a large contrast between the parameters of the constituents. However, we obtain such gaps 
for C cylinders in an epoxy matrix or W inclusions in an AI matrix and not in the opposite 
situations. In the first case, the elastic constants are higher in the inclusions than in the 
background material; however C and epoxy have similar mass densities and very different 
elastic constants, whereas in W and AI both elastic constants and mass densities are rather 
different, the velocities of sound being almost the same. Therefore, our results show that a 
statement about the relative velocities of sound in the constituents cannot give a general rule 
for the existence of complete band gaps [14]; rather, the contrast between elastic constants 
as well as mass densities should be taken into account. The method of calculation is briefly 
presented in section 2 and followed by the numerical results in section 3. Section 4 contains 
the main conclusions of the paper. 

J 0 Varseur et a1 

2. Method of calculation 

In this paper, we calculate elastic band structures of two-dimensional binary composite 
systems using a method developed by Kushwaha et a/ [15,16]. 

These periodic systems are modelled as arrays of infinite cylinders of arbitrary cross 
section made of an isotropic material A embedded in an infinite isotropic elastic matrix B 
(see figure 1). The lattice constant is Q and the filling fractions are f and (1 - f )  for the 
materials A and B respectively. The elastic parameters are periodic functions of the position. 
The mass density p and the elastic constants C, are p A  and C t  inside the cylinders and 
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p B  and C: in the background. This means that p and Cij are functions of the coordinates 
x and y where the z axis defines the direction of the cylinders. Considering the double 
periodicity in the x y  plane, we can write p and C, as Fourier series: 

P ( T )  = P ( X .  Y )  = Cp(G)e iG"  ( 1 4  
G 

C;j(r) =Ci j (x ,y )  =xCi j (G)e iG"  (16) 
G 

where T is the position vector of components x and y and G are the reciprocal lattice 
vectors in the xy  plane. The Fourier coefficients in equation (la) take the form 

where the integration is performed over the unit cell of area A = a'. 

Z X 
Figure 1. A m v e c s e  cross section of the binary composite system: a square array of infinite 
cylinders (A) periodically distributed in an infinite matrix (6). 

For G = 0, equation (2) gives the average density 

p(G = 0) = ,ij = pAf+pB(l  - f). 
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For G # 0, equation (2) may be written as 

J 0 Vaseur et a1 

where F(G) is the structure factor given by 

F(G) = /” ~ d Z ~ p ( r ) e - i G ’ P  

In (3c), the integration is only performed on material A. In an entirely similar way, equation 
(16) gives 

- ~~ 

C;j(G=O)=Cji = C k f + C B ( l - f )  I t  ( 4 4  
(4b) 

Let us now give the equations of motion in the composite material remembering that 

1 C;i(G # 0) = (C; - C:)F(G) = (ACii)F(G) 

with i = 1 or 4. 

the elastic constants and the’mass density are position dependent [18]: 

where U represents the position and time dependent displacement vector U ( T ,  t ) .  

(which means Kz = 0) and use the Bloch theorem to write the displacement field 
For wave propagation in the xy plane, one can introduce a wave vector K(K,, Ky) 

U(T cl = ei(K.r-ot) x’uK(G)e iG . r  (6) 

where w is the wave circular frequency. In this case the vibrations polarized parallel to 
the z axis become decoupled from those in the xy plane. The equations of motion for the 
former modes are written as 

G 

x F ( G  - G’)uL,(G’) = 0 

whereas the latter modes are governed by the equation 

(7) 

[cw(K + G)’- pw2I. uL(G) + (E, ,  - &)(K + G)(K + GI). uL(G) 

+ F(G-G‘){(AC~~)[(K+G)-(K+G’).UL(G’) 

+ (K + G‘)(K + G) . uL(G‘) - 2(K + G)(K + G‘) . u&(G’)] 

G‘#G 

+(ACII)(K+G).(K+G’).UT,(G’)-(A~)O~U~(G’)] = O  (8) 

where uT = u,x + uyy. 
Equations (7) and (8) are two infinite sets of linear equations where the unknowns are 

the Fourier components of the displacement field. In practice, only a finite number of G 
vectors are, of course, taken into account for the numerical calculation. The determinants of 
these systems of equations must vanish, which conditions yield the band structure o.(K). 
The eigenmodes-of (7) correspond to transverse vibrations (U = uLz  I K) and will be 
called 2 modes or bands. On the other hand, the eigenvalues of (8) describe coupled 
longitudinal-hansverse vibrations, to be denoted XY modes or bands. 
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3. Numerical results for the square lattice 

We first consider composite systems of technological interest, namely C fibres reinforced 
epoxy composites, which are used, for example, in aeronautics and car manufacture [19]. 
We calculate the dispersion curves for different filling fractions and various cross sections 
of the cylinders. Epoxy and C are polycrystalline materials, and may be considered as 
isotropic on a macroscopic scale. Their physical parameters are listed in table 1. 

Table 1. Physical parameters of Carbon [19], epoxy resin [19], W [21] and AI [21]. CI and C, 
represent respectively the longitudinal and the msverse speed of sound. 

P CI1 CM c1=Jc?;ii; c , = X i z  
(g c d )  (IO" dyn cm-') (IO" dyn c m 2 )  (m s-l) (m s-]) 

~. 
C 1.75 30.96 8.846 13310~ 7iio 
Epoxy 1.2 0.964 0.161 2830 1160 
W 19.3 50.1 15.14 5090 2800 
AI 2.692 11.2 2.79 6450 3220 

It is assumed that the array of cylinders forms a square lattice of period a .  Then the 
reciprocal lattice vectors G are given by 

G = (2x/a)(n,a: + n,y) (9) 

where n, and ny are two integers. In the course of the numerical calculations, these integers 
are limited to the interval - N  < nr, p l y  < + N .  For the sake of consistency, all the results 
sketched below are obtained with N = 6. However, some of the dispersion curves were 
also calculated with N = 10 and confirmed the good accuracy of the results for N = 6. 
The different shapes of the cylinders' cross sections are the following: 

(i) circular section of radius ro; 
(ii) square section of width U: and 
(iii) rotated square section of width 21 with a 45" angle of rotation with respect to the 

x ,  y axes. 

The structure factors F ( G )  associated with these shapes are respectively 

(i) F(G) = 2 f J1 (Gro)/Gro with f = xr:/a2 0 < f < x/4 

where J1 is the Bessel function of the first kind, 

(ii) F(G) = f(sin(G,l)/G,Z)(sin(G,l)/G,l) with f = 412/a2 0 < f < 1 

and 

41' 
a2 

with f= - andO<f  < 4. 
In each case, the maximum value of the filling fraction f corresponds to the close packing 
of the cylinders. 
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The left part of figure 2(u) shows the first few Z and XY phononic bands for the square 
array of C cylinders of circular cross section in an epoxy matrix, the filling fraction f being 
equal to 0.55. We have plotted the band structure for the 2 and XY modes in the three 
principal symmetry directions of the Brillouin zone (see the inset in figure 2(u)). The plots 
are given in terms of the reduced frequency !2 = ou/2nco (where CO is equal to (c?++/,ij)'/z) 
versus the reduced Bloch wave vector k = Kuj2rr.  

In the range of frequency of figure 2(u), three complete band gaps were found between 
the XY and the Z mode bands. These gaps are defined by the high-symmetry points r,X,M 
of the first Brillouin zone except for the bottom of the fust gap. One can also notice that 
the higher dispersion curves in figure 2(a)  are rather narrow and we especially mention 
the presence of a nearly flat Z band between the second and third forbidden bands. These 
behaviours may indicate the existence of localized states in this structure, even though we 
did not search for the eigenvectors in our computation. 

The right panel of figure 2(u) presents the variations of the densities of states of XY 
and Z modes, scanning the interior of the irreducible triangle rXM of the Brillouin zone at 
1215 points. The phononic gaps in the band structure coincide exactly with regions of null 
density of states. This leads us to confirm that the existing band gaps extend throughout 
the Brillouin zone and are not only on its periphery. One can also notice that for the nearly 
flat 2 band, the density of states resembles a Dirac S function. 

The band structure in figure 2(u), is computed for a filling fraction of 0.55 because this 
is the value o f f  that leads to the largest complete gaps. Indeed, in figure 2(b), the widths 
of these three gaps are presented as a function of the filling fraction f. We note the opening 
of complete band gaps over a large range of the filling fraction, namely, 0.2 < f < 0.65. 
One can also notice that the most usual commercially available C fibre reinforced epoxy 
composite corresponds to a filling fraction equal to 0.6 [19].  

In figure 3(u), the Z and XY band structures for the square array of C cylinders of 
square cross section in an epoxy matrix are drawn for f = 0.65. Two complete gaps appear 
in the range of energy considered, as well as a few rather narrow bands. The value of the 
largest gap width is now AS2 = 0.14 as compared to a value of AD = 0.09 in figure 2(u). 
It is noteworthy, for this cylinder geometry, that there exists a very large gap between the 
second and the third XY bands, which explains the presence of a very large complete gap. 

As a function of the filling fraction, complete band gaps open up for 0.25 < f < 0.8 
with a maximum of their width around f = 0.65 (figure 3(6)).  The gap widths are greater 
than those calculated for the cylinders of circular cross section. 

We have also investigated the case of square cylinders rotated through 45" with respect 
to the x ,  y axes. In figure 4(u), the band structure for f = 0.35 displays two complete 
band gaps. The third, the fifth and the sixth 2 bands are quite flat. The largest gap width 
is AS2 = 0.033 in this case. 

Figure 4(b) shows that the domain of existence of complete band gaps in this structure 
corresponds to filling fractions in the range 0.225 < f < 0.4. In this composite system, 
the gap widths are much lower than those obtained in the two preceding geometries. 

Let us notice that for the three geometries, the maximum gap width is obtained for 
flfmax N 0.6 where f- corresponds to the close-packing value o f f .  

The acoustic band structures of the C fibres reinforced epoxy composites are very 
sensitive to the cylinders' cross section as well as to the filling fraction. The existence of 
rather large gaps is here associated with the very large contrast between the elastic constants 
of the cylinders and the background, while the mass densities of these materials are of the 
same order of magnitude (see table 1). Notice that for these usual composite systems 
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Figure 2. (a) Tbe elastic band structure and density of states for C cylinders of arcular cross 
section in an epoxy resin matrix, for f = 0.55. In the left panel of the figure, the band structure 
is plotted for Z (dashed lines) and for XY (solid lines) modes of vibration, in the three high- 
symmetry directions TXM of the first BriUouin wne (see inset). One can notice three complete 
band gaps (a fourth one of lower width exists between the ninth XY band and the eighth Z 
band) as well as the existence of nearly flat bands such as the fifth Z band. The right panel 
of the figure shows the density of states for Z (dashed lines) and XY (solid lines) modes of 
vibration. The phononic wmplete band gaps in the elastic band structure appear in this figure 
as regiowof null densities of states. (b) The width of the first three complete band gaps as a 
function of the filling fraction: solid line. first gap; dash-dotted line, second gap; dashed line, 
thud gap. 
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Figure 3. (a) Elastic band smctures for C cylinders of square section in an epoxy matrix, for 
f = 0.65; (b) the width of the first WO complete bmd gaps as a function of the filling fraction: 
solid line, lint gap; dash-dotted line, second gap. It is noteworthy that the second complete 
band gap, which appean for higher filling fraction. is larger than the first one. 
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Figure 4. (a) Elastic band structures for C cylinders of square cross section rotated through 4Y 
around the Z axis, in an epoxy ma@ix for f = 0.35. (6) The width of the first two complete 
band gaps as a function of lhe filling hadion: solid line, first gap: dash-doued line, second gap. 
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presenting very large complete acoustic gaps, the cylinders are made of the high-velocity 
material. 

We also studied another composite of technological interest, namely glass fibre 
reinforced epoxy matrix, using a filling fraction of 0.6. Only one complete gap was found 
in this case, having a width smaller than that of the first gap in the C-epoxy composite. 
The glass fibres’ elastic constants being approximately three times lower than those of the 
C fibres [19], the contrast between the elastic constants of the matrix and the background 
is in this case less important than in the C-epoxy system. 

Finally, as a matter of comparison, we also considered the case of metallic composites 
where there is a contrast between both elastic constants and mass densities of the constituents 
whereas their velocities of sound have the same order of magnitude. W and AI are two 
quasi-isotropic metals presenting a large ratio between the parameters although the contrast 
is far from being comparable to the C-epoxy case (see table 1). With a filling fraction of 
f = 0.30, figures 5 and 6 give the dispersion curves of W (AI) cylinders in an AI (W) 
background. Only one complete gap, of width AS2 = 0.05, is found in the first case while 
there is no such gap in the second case. Qualitatively similar results are also obtained for 
f = 0.15, with a smaller width of the gap than at f = 0.30. These behaviours are similar 
to those found in [I31 for the Au-Be system. We can notice that the velocities of sound in 
W are slightly lower than those in AI. 

J 0 Vmseur et al 

REDUCED WAVE VECTOR 
Figure 5. Elastic band StmctureS for W cylinders in an AI matrix for f = 0.30. One phononic 
band ga.p appears between the third X Y  band and the second Z band. 
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Figure 6. The same as in figure 5 for AI cylinders in a W matrix far f = 0.30. There is no 
band gap in this case. 

4. Conclusion 

The purpose of this paper was to investigate theoretically the existence of complete band 
gaps in the acoustic band structure of periodic elastic fibres reinforced composite materials 
such as the C-epoxy system. We obtained relatively large complete gaps where the 
propagation, perpendicular to the cylinders, of acoustic waves is forbidden. The influence of 
the geometry of the inclusions, and the effect of  the composition of the composite material, 
on the band structure were studied. In the case of a square array of C cylinders embedded 
in an infinite epoxy background, larger complete band gaps appear for a square section 
parallel to the lattice than for the other two configurations studied. The existence of a 
strong contrast between the physical parameters of the inclusions and the matrix seems to 
be a general rule to obtain complete band gaps in the band structure of elastic composite 
systems. Of the materials considered in this work, C and epoxy have rather similar mass 
densities and very different elastic constants, whereas in W and AI the velocities of sound 
are in the same range, the elastic constants and mass densities being much higher in W 
than in Al. With these constituents, we have obtained complete band gaps for C fibres in 
epoxy and W fibres in an A1 matrix, but not in the opposite situations. We conclude that 
the contrast between both elastic constants and mass densities is important for the existence 
of complete band gaps, which cannot be solely predicted by a requirement concerning the 
relative velocities of sound [14]. 
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In this paper, we have considered square arrays of cylinders perfectly embedded in an 
infinite elastic background. This means that we neglected the effects due to decohesion of 
the fibres from the matrix and to roughness at the interface between the cylinders and the 
matrix. Such defects could alter the acoustic wave propagation in composite materials and 
consequently modify the band structure of such composites or introduce wave attenuation. 

In a forthcoming publication [ZO], we present theoretical and experimental investigations 
of a binary composite consisting of a square array of Duralumin cylinders in a Pvc 
matrix, exhibiting a good correlation between the predicted local gaps and the dips in  
the transmission spectrum of the XY acoustic waves. 

It could be interesting to extend our calculation to other geometries of practical interest 
and to non-periodic systems, and especially to weakly disordered composites, in order to 
improve our understanding of acoustic wave localization. 

References 

[ I ]  Bai D and Keller J B 1987 3. Acawf. Soe. A m  82 1436 
[2] Achenbach J D md Kitaham M 1987 3. Acuust. Soc. A m  81 595 
[3] Hennion A C. Bossut R. Decarpigny J Nand Audoly C 1990 1. Acausr. Soc. A m  87 1861 
[4] Hladky-Hemion A C and Deurpipy J N 1991 3. Acousr. Soc. A m  90 3356 
151 Langlet Ph, Hladky-Hendon A C and Decarpigny J N 1992 1 Physique IV COIL 2 CI 1065 
[6] Wirgin A md Ghariani S 1992 J. Physique IV ColL 1 C1 791 
[7] Leung K M and Liu Y F 1990 Phys. Rev. B 41 10 188 
[SI Meade R D. Bmmmer K D, Rappe A M  and loannopulos 1 D 1992 AppL Phys. Len. 61 495 
[9] Yablonovitch E 1993 3. Opr. Soc. A m  B 10 283 

[lo] Maradudin A A and McGum A R 1993 3. Opt Soc. Am. B 10 307 
[ l  11 Economou E M and Sigalas M M 1993 Phoronic BMd-Gags M d  Lxdiwrion ed C M Soukoulis (New 

[I21 Sigalas M M and Economou E N I992 3. Sound vib. 158 377 
[I31 Sigdas M M and Economou E N  1993 SofidSrafe Commun. 86 141 
[I41 Economou E N and Sigalas M M 1993 Phys. Rev. B 48 13434 
[IS] Kushwaha M S, Halevi P, Dobnynski Land Djafarl-Rouhani B 1993 Phys. Rev. Left 71 2022 
[I61 Kushwaha M S, Halevi P, MYtinez-Montes G, Dobrzynski Land Djafari-Rouhani B 1994 Phys. Rev. B 49 

[I71 Kushwaha M S and Halevi P 1994 AppL Phys. Left 64 1085 
[IS] Landau Land Lifshifz E 1990 Thbrie de 1'ElauicirP 2nd edn(Moscow: Mir) 
I191 Gay D 1991 Mafdriarrr Composires (Hem&) 
[ZO] Vasseur I and Deymier P A  ef d submitted 
[21] Americm Insrimre ofphysics Hnndbook 3rd edn 1972 (New York AIP) 

York Plenum) p 317 

2313 


